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Abstract

The work provides an overview on MREA (Marine Rapid Environmental Assessment) experimental and observational
methodology developed in the last years, thanks to the synergies between several multi-disciplinary oceanographic research
centers and the Italian Navy Hydrographic Institute.

The approach is based on an optimal strategy (i) to collect evidences on ocean mesoscales and submesoscales with a spatial-
and-time synoptic coverage and repeated surveys, (ii) to increase the skills of ocean forecasting, producing both
initialization and verification datasets for numerical models.
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 The Marine Rapid Environmental Assessment is a methodology to collect
marine data useful to improve our knowledge of the marine state and
specific dynamical processes and increase skill of ocean forecasting and
analyses.
It was developed in the late 1990s to collect synoptic oceanographic data
relevant for nowcasts, forecasts and derived applications by Robinson
and Sellschopp (2002).
Data collection and analysis has to be developed which considers synoptic
time scales and repeated surveys to produce both initialization and
verification data sets.
MREA is one of the optimal experimental strategies to collect definitive
evidence on ocean mesoscales for improving knowledge and forecast skill.
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“The concept of Rapid Environmental Assessment (REA) is to provide environmental nowcasts and forecasts accurate and efficient enough to support
operational activity in any arbitrary region of the global coastal ocean, and to respond to operational assessment requests effectively on very short notice.
Ocean science and technology today are rapidly evolving and recognized as generally involving interdisciplinary processes and interactions on multiple scales
in space and time” (Robinson et al., 1999).
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MREA17 - Ligurian Sea (Sept-Oct 2017) Concluding remarks

$® The sampling strategy) \ /(@) Measurements ) * The Marine Rapid Environmental Assessment methodology has been developed, progressively improved and refined with

standard protocols for the on-board operations.

The next campaigns planned in Autumn 2017 in the framework of LOGMEC experiment, I Oceanographic cruises:

leaded by CMRE, will investigate the submesoscale fields in Ligurian Sea (Western . = CTD Idronaut 316Plus £ I ' . . . : . . . .
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The multiscale-multidisciplinary aspects (5M-500)° (SM-hyb ) (SM-250) = . o _ ) _ _ .
are addressed combining remote sensed 7 oceanographic cruises: Surface "y * The methodology has been verified to be relocatable in different areas (Ligurian Sea and Gulf of Taranto), at multiple scales
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* ScanFish with sensors \ _ Radiometry .

multidisciplinary sensors. This will allow - ECO Puck !  The MREA data collections have allowed (i) supporting operational and forecasting oceanography (producing both initialization

to capture possible submesoscale ScanFish

structures and simultaneously | (woFeldsped T : and validation datasets and increasing the the forecasting skills), and (i) performing process study (e.g. the possible

characterize the large scale dynamics. . for SM-500, SM-hyb and - formations of sub-mesoscale structures, the reversal of circulation in certain periods of the year from anticyclonic to
\ - cyclonic in Gulf of Taranto).




